Skip to main content

Google

All functionality related to Google Cloud Platform and other Google products.

Chat models

We recommend individual developers to start with Gemini API (langchain-google-genai) and move to Vertex AI (langchain-google-vertexai) when they need access to commercial support and higher rate limits. If you’re already Cloud-friendly or Cloud-native, then you can get started in Vertex AI straight away. Please see here for more information.

Google Generative AI

Access GoogleAI Gemini models such as gemini-pro and gemini-pro-vision through the ChatGoogleGenerativeAI class.

pip install -U langchain-google-genai

Configure your API key.

export GOOGLE_API_KEY=your-api-key
from langchain_google_genai import ChatGoogleGenerativeAI

llm = ChatGoogleGenerativeAI(model="gemini-pro")
llm.invoke("Sing a ballad of LangChain.")

Gemini vision model supports image inputs when providing a single chat message.

from langchain_core.messages import HumanMessage
from langchain_google_genai import ChatGoogleGenerativeAI

llm = ChatGoogleGenerativeAI(model="gemini-pro-vision")

message = HumanMessage(
content=[
{
"type": "text",
"text": "What's in this image?",
}, # You can optionally provide text parts
{"type": "image_url", "image_url": "https://picsum.photos/seed/picsum/200/300"},
]
)
llm.invoke([message])

The value of image_url can be any of the following:

  • A public image URL
  • A gcs file (e.g., "gcs://path/to/file.png")
  • A local file path
  • A base64 encoded image (e.g., )
  • A PIL image

Vertex AI

Access chat models like Gemini via Google Cloud.

We need to install langchain-google-vertexai python package.

pip install langchain-google-vertexai

See a usage example.

from langchain_google_vertexai import ChatVertexAI

Anthropic on Vertex AI Model Garden

See a usage example.

from langchain_google_vertexai.model_garden import ChatAnthropicVertex

Llama on Vertex AI Model Garden

from langchain_google_vertexai.model_garden_maas.llama import VertexModelGardenLlama

Mistral on Vertex AI Model Garden

from langchain_google_vertexai.model_garden_maas.mistral import VertexModelGardenMistral

Gemma local from Hugging Face

Local Gemma model loaded from HuggingFace.

We need to install langchain-google-vertexai python package.

pip install langchain-google-vertexai
from langchain_google_vertexai.gemma import GemmaChatLocalHF

Gemma local from Kaggle

Local Gemma model loaded from Kaggle.

We need to install langchain-google-vertexai python package.

pip install langchain-google-vertexai
from langchain_google_vertexai.gemma import GemmaChatLocalKaggle

Gemma on Vertex AI Model Garden

We need to install langchain-google-vertexai python package.

pip install langchain-google-vertexai
from langchain_google_vertexai.gemma import GemmaChatVertexAIModelGarden

Vertex AI image captioning

Implementation of the Image Captioning model as a chat.

We need to install langchain-google-vertexai python package.

pip install langchain-google-vertexai
from langchain_google_vertexai.vision_models import VertexAIImageCaptioningChat

Vertex AI image editor

Given an image and a prompt, edit the image. Currently only supports mask-free editing.

We need to install langchain-google-vertexai python package.

pip install langchain-google-vertexai
from langchain_google_vertexai.vision_models import VertexAIImageEditorChat

Vertex AI image generator

Generates an image from a prompt.

We need to install langchain-google-vertexai python package.

pip install langchain-google-vertexai
from langchain_google_vertexai.vision_models import VertexAIImageGeneratorChat

Vertex AI visual QnA

Chat implementation of a visual QnA model

We need to install langchain-google-vertexai python package.

pip install langchain-google-vertexai
from langchain_google_vertexai.vision_models import VertexAIVisualQnAChat

LLMs

Google Generative AI

Access GoogleAI Gemini models such as gemini-pro and gemini-pro-vision through the GoogleGenerativeAI class.

Install python package.

pip install langchain-google-genai

See a usage example.

from langchain_google_genai import GoogleGenerativeAI
API Reference:GoogleGenerativeAI

Vertex AI Model Garden

Access PaLM and hundreds of OSS models via Vertex AI Model Garden service.

We need to install langchain-google-vertexai python package.

pip install langchain-google-vertexai

See a usage example.

from langchain_google_vertexai import VertexAIModelGarden

Gemma local from Hugging Face

Local Gemma model loaded from HuggingFace.

We need to install langchain-google-vertexai python package.

pip install langchain-google-vertexai
from langchain_google_vertexai.gemma import GemmaLocalHF

Gemma local from Kaggle

Local Gemma model loaded from Kaggle.

We need to install langchain-google-vertexai python package.

pip install langchain-google-vertexai
from langchain_google_vertexai.gemma import GemmaLocalKaggle

Gemma on Vertex AI Model Garden

We need to install langchain-google-vertexai python package.

pip install langchain-google-vertexai
from langchain_google_vertexai.gemma import GemmaVertexAIModelGarden

Vertex AI image captioning

Implementation of the Image Captioning model as an LLM.

We need to install langchain-google-vertexai python package.

pip install langchain-google-vertexai
from langchain_google_vertexai.vision_models import VertexAIImageCaptioning

Embedding models

Google Generative AI embedding

See a usage example.

pip install -U langchain-google-genai

Configure your API key.

export GOOGLE_API_KEY=your-api-key
from langchain_google_genai import GoogleGenerativeAIEmbeddings

Google Generative AI server-side embedding

Install the python package:

pip install langchain-google-genai
from langchain_google_genai.google_vector_store import ServerSideEmbedding
API Reference:ServerSideEmbedding

Vertex AI

We need to install langchain-google-vertexai python package.

pip install langchain-google-vertexai

See a usage example.

from langchain_google_vertexai import VertexAIEmbeddings

Palm embedding

We need to install langchain-community python package.

pip install langchain-community
from langchain_community.embeddings.google_palm import GooglePalmEmbeddings
API Reference:GooglePalmEmbeddings

Document Loaders

AlloyDB for PostgreSQL

Google Cloud AlloyDB is a fully managed relational database service that offers high performance, seamless integration, and impressive scalability on Google Cloud. AlloyDB is 100% compatible with PostgreSQL.

Install the python package:

pip install langchain-google-alloydb-pg

See usage example.

from langchain_google_alloydb_pg import AlloyDBEngine, AlloyDBLoader

BigQuery

Google Cloud BigQuery is a serverless and cost-effective enterprise data warehouse that works across clouds and scales with your data in Google Cloud.

We need to install langchain-google-community with Big Query dependencies:

pip install langchain-google-community[bigquery]

See a usage example.

from langchain_google_community import BigQueryLoader
API Reference:BigQueryLoader

Bigtable

Google Cloud Bigtable is Google's fully managed NoSQL Big Data database service in Google Cloud.

Install the python package:

pip install langchain-google-bigtable

See Googel Cloud usage example.

from langchain_google_bigtable import BigtableLoader

Cloud SQL for MySQL

Google Cloud SQL for MySQL is a fully-managed database service that helps you set up, maintain, manage, and administer your MySQL relational databases on Google Cloud.

Install the python package:

pip install langchain-google-cloud-sql-mysql

See usage example.

from langchain_google_cloud_sql_mysql import MySQLEngine, MySQLLoader

Cloud SQL for SQL Server

Google Cloud SQL for SQL Server is a fully-managed database service that helps you set up, maintain, manage, and administer your SQL Server databases on Google Cloud.

Install the python package:

pip install langchain-google-cloud-sql-mssql

See usage example.

from langchain_google_cloud_sql_mssql import MSSQLEngine, MSSQLLoader

Cloud SQL for PostgreSQL

Google Cloud SQL for PostgreSQL is a fully-managed database service that helps you set up, maintain, manage, and administer your PostgreSQL relational databases on Google Cloud.

Install the python package:

pip install langchain-google-cloud-sql-pg

See usage example.

from langchain_google_cloud_sql_pg import PostgresEngine, PostgresLoader

Cloud Storage

Cloud Storage is a managed service for storing unstructured data in Google Cloud.

We need to install langchain-google-community with Google Cloud Storage dependencies.

pip install langchain-google-community[gcs]

There are two loaders for the Google Cloud Storage: the Directory and the File loaders.

See a usage example.

from langchain_google_community import GCSDirectoryLoader
API Reference:GCSDirectoryLoader

See a usage example.

from langchain_google_community import GCSFileLoader
API Reference:GCSFileLoader

Cloud Vision loader

Install the python package:

pip install langchain-google-community[vision]
from langchain_google_community.vision import CloudVisionLoader
API Reference:CloudVisionLoader

El Carro for Oracle Workloads

Google El Carro Oracle Operator offers a way to run Oracle databases in Kubernetes as a portable, open source, community driven, no vendor lock-in container orchestration system.

pip install langchain-google-el-carro

See usage example.

from langchain_google_el_carro import ElCarroLoader

Google Drive

Google Drive is a file storage and synchronization service developed by Google.

Currently, only Google Docs are supported.

We need to install langchain-google-community with Google Drive dependencies.

pip install langchain-google-community[drive]

See a usage example and authorization instructions.

from langchain_google_community import GoogleDriveLoader
API Reference:GoogleDriveLoader

Firestore (Native Mode)

Google Cloud Firestore is a NoSQL document database built for automatic scaling, high performance, and ease of application development.

Install the python package:

pip install langchain-google-firestore

See usage example.

from langchain_google_firestore import FirestoreLoader

Firestore (Datastore Mode)

Google Cloud Firestore in Datastore mode is a NoSQL document database built for automatic scaling, high performance, and ease of application development. Firestore is the newest version of Datastore and introduces several improvements over Datastore.

Install the python package:

pip install langchain-google-datastore

See usage example.

from langchain_google_datastore import DatastoreLoader

Memorystore for Redis

Google Cloud Memorystore for Redis is a fully managed Redis service for Google Cloud. Applications running on Google Cloud can achieve extreme performance by leveraging the highly scalable, available, secure Redis service without the burden of managing complex Redis deployments.

Install the python package:

pip install langchain-google-memorystore-redis

See usage example.

from langchain_google_memorystore_redis import MemorystoreDocumentLoader

Spanner

Google Cloud Spanner is a fully managed, mission-critical, relational database service on Google Cloud that offers transactional consistency at global scale, automatic, synchronous replication for high availability, and support for two SQL dialects: GoogleSQL (ANSI 2011 with extensions) and PostgreSQL.

Install the python package:

pip install langchain-google-spanner

See usage example.

from langchain_google_spanner import SpannerLoader

Speech-to-Text

Google Cloud Speech-to-Text is an audio transcription API powered by Google's speech recognition models in Google Cloud.

This document loader transcribes audio files and outputs the text results as Documents.

First, we need to install langchain-google-community with speech-to-text dependencies.

pip install langchain-google-community[speech]

See a usage example and authorization instructions.

from langchain_google_community import SpeechToTextLoader
API Reference:SpeechToTextLoader

Document Transformers

Document AI

Google Cloud Document AI is a Google Cloud service that transforms unstructured data from documents into structured data, making it easier to understand, analyze, and consume.

We need to set up a GCS bucket and create your own OCR processor The GCS_OUTPUT_PATH should be a path to a folder on GCS (starting with gs://) and a processor name should look like projects/PROJECT_NUMBER/locations/LOCATION/processors/PROCESSOR_ID. We can get it either programmatically or copy from the Prediction endpoint section of the Processor details tab in the Google Cloud Console.

pip install langchain-google-community[docai]

See a usage example.

from langchain_core.document_loaders.blob_loaders import Blob
from langchain_google_community import DocAIParser
API Reference:Blob | DocAIParser

Google Translate

Google Translate is a multilingual neural machine translation service developed by Google to translate text, documents and websites from one language into another.

The GoogleTranslateTransformer allows you to translate text and HTML with the Google Cloud Translation API.

First, we need to install the langchain-google-community with translate dependencies.

pip install langchain-google-community[translate]

See a usage example and authorization instructions.

from langchain_google_community import GoogleTranslateTransformer

Vector Stores

AlloyDB for PostgreSQL

Google Cloud AlloyDB is a fully managed relational database service that offers high performance, seamless integration, and impressive scalability on Google Cloud. AlloyDB is 100% compatible with PostgreSQL.

Install the python package:

pip install langchain-google-alloydb-pg

See usage example.

from langchain_google_alloydb_pg import AlloyDBEngine, AlloyDBVectorStore

Google Cloud BigQuery, BigQuery is a serverless and cost-effective enterprise data warehouse in Google Cloud.

Google Cloud BigQuery Vector Search BigQuery vector search lets you use GoogleSQL to do semantic search, using vector indexes for fast but approximate results, or using brute force for exact results.

It can calculate Euclidean or Cosine distance. With LangChain, we default to use Euclidean distance.

We need to install several python packages.

pip install google-cloud-bigquery

See a usage example.

from langchain.vectorstores import BigQueryVectorSearch

Memorystore for Redis

Google Cloud Memorystore for Redis is a fully managed Redis service for Google Cloud. Applications running on Google Cloud can achieve extreme performance by leveraging the highly scalable, available, secure Redis service without the burden of managing complex Redis deployments.

Install the python package:

pip install langchain-google-memorystore-redis

See usage example.

from langchain_google_memorystore_redis import RedisVectorStore

Spanner

Google Cloud Spanner is a fully managed, mission-critical, relational database service on Google Cloud that offers transactional consistency at global scale, automatic, synchronous replication for high availability, and support for two SQL dialects: GoogleSQL (ANSI 2011 with extensions) and PostgreSQL.

Install the python package:

pip install langchain-google-spanner

See usage example.

from langchain_google_spanner import SpannerVectorStore

Firestore (Native Mode)

Google Cloud Firestore is a NoSQL document database built for automatic scaling, high performance, and ease of application development.

Install the python package:

pip install langchain-google-firestore

See usage example.

from langchain_google_firestore import FirestoreVectorStore

Cloud SQL for MySQL

Google Cloud SQL for MySQL is a fully-managed database service that helps you set up, maintain, manage, and administer your MySQL relational databases on Google Cloud.

Install the python package:

pip install langchain-google-cloud-sql-mysql

See usage example.

from langchain_google_cloud_sql_mysql import MySQLEngine, MySQLVectorStore

Cloud SQL for PostgreSQL

Google Cloud SQL for PostgreSQL is a fully-managed database service that helps you set up, maintain, manage, and administer your PostgreSQL relational databases on Google Cloud.

Install the python package:

pip install langchain-google-cloud-sql-pg

See usage example.

from langchain_google_cloud_sql_pg import PostgresEngine, PostgresVectorStore

Google Cloud Vertex AI Vector Search from Google Cloud, formerly known as Vertex AI Matching Engine, provides the industry's leading high-scale low latency vector database. These vector databases are commonly referred to as vector similarity-matching or an approximate nearest neighbor (ANN) service.

Install the python package:

pip install langchain-google-vertexai

See a usage example.

from langchain_google_vertexai import VectorSearchVectorStore

Vertex AI Vector Search with DataStore

VectorSearch with DatasTore document storage.

Install the python package:

pip install langchain-google-vertexai

See a usage example.

from langchain_google_vertexai import VectorSearchVectorStoreDatastore

VectorSearchVectorStoreGCS

Alias of VectorSearchVectorStore for consistency with the rest of vector stores with different document storage backends.

Install the python package:

pip install langchain-google-vertexai
from langchain_google_vertexai import VectorSearchVectorStoreGCS

Google Generative AI Vector Store

Currently, it computes the embedding vectors on the server side. For more information visit Guide.

Install the python package:

pip install langchain-google-genai
from langchain_google_genai.google_vector_store import GoogleVectorStore
API Reference:GoogleVectorStore

ScaNN

Google ScaNN (Scalable Nearest Neighbors) is a python package.

ScaNN is a method for efficient vector similarity search at scale.

ScaNN includes search space pruning and quantization for Maximum Inner Product Search and also supports other distance functions such as Euclidean distance. The implementation is optimized for x86 processors with AVX2 support. See its Google Research github for more details.

We need to install scann python package.

pip install scann

See a usage example.

from langchain_community.vectorstores import ScaNN
API Reference:ScaNN

Retrievers

Google Drive

We need to install several python packages.

pip install google-api-python-client google-auth-httplib2 google-auth-oauthlib langchain-googledrive

See a usage example and authorization instructions.

from langchain_googledrive.retrievers import GoogleDriveRetriever

Vertex AI Search from Google Cloud allows developers to quickly build generative AI powered search engines for customers and employees.

See a usage example.

Note: GoogleVertexAISearchRetriever is deprecated, use VertexAIMultiTurnSearchRetriever, VertexAISearchSummaryTool, and VertexAISearchRetriever (see below).

GoogleVertexAISearchRetriever

We need to install the google-cloud-discoveryengine python package.

pip install google-cloud-discoveryengine
from langchain_community.retrievers import GoogleVertexAISearchRetriever

VertexAIMultiTurnSearchRetriever

from langchain_google_community import VertexAIMultiTurnSearchRetriever

VertexAISearchRetriever

from langchain_google_community import VertexAIMultiTurnSearchRetriever

VertexAISearchSummaryTool

from langchain_google_community import VertexAISearchSummaryTool

Document AI Warehouse

Document AI Warehouse from Google Cloud allows enterprises to search, store, govern, and manage documents and their AI-extracted data and metadata in a single platform.

Note: GoogleDocumentAIWarehouseRetriever is deprecated, use DocumentAIWarehouseRetriever (see below).

from langchain.retrievers import GoogleDocumentAIWarehouseRetriever
docai_wh_retriever = GoogleDocumentAIWarehouseRetriever(
project_number=...
)
query = ...
documents = docai_wh_retriever.invoke(
query, user_ldap=...
)
from langchain_google_community.documentai_warehouse import DocumentAIWarehouseRetriever

Tools

Text-to-Speech

Google Cloud Text-to-Speech is a Google Cloud service that enables developers to synthesize natural-sounding speech with 100+ voices, available in multiple languages and variants. It applies DeepMind’s groundbreaking research in WaveNet and Google’s powerful neural networks to deliver the highest fidelity possible.

We need to install python packages.

pip install google-cloud-text-to-speech langchain-google-community

See a usage example and authorization instructions.

from langchain_google_community import TextToSpeechTool
API Reference:TextToSpeechTool

Google Drive

We need to install several python packages.

pip install google-api-python-client google-auth-httplib2 google-auth-oauthlib
pip install langchain-googledrive

See a usage example and authorization instructions.

from langchain_googledrive.utilities.google_drive import GoogleDriveAPIWrapper
from langchain_googledrive.tools.google_drive.tool import GoogleDriveSearchTool

Google Finance

We need to install a python package.

pip install google-search-results

See a usage example and authorization instructions.

from langchain_community.tools.google_finance import GoogleFinanceQueryRun
from langchain_community.utilities.google_finance import GoogleFinanceAPIWrapper

Google Jobs

We need to install a python package.

pip install google-search-results

See a usage example and authorization instructions.

from langchain_community.tools.google_jobs import GoogleJobsQueryRun
from langchain_community.utilities.google_finance import GoogleFinanceAPIWrapper

Google Lens

See a usage example and authorization instructions.

from langchain_community.tools.google_lens import GoogleLensQueryRun
from langchain_community.utilities.google_lens import GoogleLensAPIWrapper

Google Places

We need to install a python package.

pip install googlemaps

See a usage example and authorization instructions.

from langchain.tools import GooglePlacesTool
API Reference:GooglePlacesTool

Google Scholar

We need to install a python package.

pip install google-search-results

See a usage example and authorization instructions.

from langchain_community.tools.google_scholar import GoogleScholarQueryRun
from langchain_community.utilities.google_scholar import GoogleScholarAPIWrapper
  • Set up a Custom Search Engine, following these instructions
  • Get an API Key and Custom Search Engine ID from the previous step, and set them as environment variables GOOGLE_API_KEY and GOOGLE_CSE_ID respectively.
from langchain_google_community import GoogleSearchAPIWrapper

For a more detailed walkthrough of this wrapper, see this notebook.

We can easily load this wrapper as a Tool (to use with an Agent). We can do this with:

from langchain.agents import load_tools
tools = load_tools(["google-search"])
API Reference:load_tools

GoogleSearchResults

Tool that queries the Google Search API (via GoogleSearchAPIWrapper) and gets back JSON.

from langchain_community.tools import GoogleSearchResults
API Reference:GoogleSearchResults

GoogleSearchRun

Tool that queries the Google Search API (via GoogleSearchAPIWrapper).

from langchain_community.tools import GoogleSearchRun
API Reference:GoogleSearchRun

We need to install a python package.

pip install google-search-results

See a usage example and authorization instructions.

from langchain_community.tools.google_trends import GoogleTrendsQueryRun
from langchain_community.utilities.google_trends import GoogleTrendsAPIWrapper

Toolkits

GMail

Google Gmail is a free email service provided by Google. This toolkit works with emails through the Gmail API.

We need to install langchain-google-community with required dependencies:

pip install langchain-google-community[gmail]

See a usage example and authorization instructions.

from langchain_google_community import GmailToolkit
API Reference:GmailToolkit

GMail individual tools

You can use individual tools from GMail Toolkit.

from langchain_google_community.gmail.create_draft import GmailCreateDraft
from langchain_google_community.gmail.get_message import GmailGetMessage
from langchain_google_community.gmail.get_thread import GmailGetThread
from langchain_google_community.gmail.search import GmailSearch
from langchain_google_community.gmail.send_message import GmailSendMessage

Memory

AlloyDB for PostgreSQL

AlloyDB for PostgreSQL is a fully managed relational database service that offers high performance, seamless integration, and impressive scalability on Google Cloud. AlloyDB is 100% compatible with PostgreSQL.

Install the python package:

pip install langchain-google-alloydb-pg

See usage example.

from langchain_google_alloydb_pg import AlloyDBEngine, AlloyDBChatMessageHistory

Cloud SQL for PostgreSQL

Cloud SQL for PostgreSQL is a fully-managed database service that helps you set up, maintain, manage, and administer your PostgreSQL relational databases on Google Cloud.

Install the python package:

pip install langchain-google-cloud-sql-pg

See usage example.

from langchain_google_cloud_sql_pg import PostgresEngine, PostgresChatMessageHistory

Cloud SQL for MySQL

Cloud SQL for MySQL is a fully-managed database service that helps you set up, maintain, manage, and administer your MySQL relational databases on Google Cloud.

Install the python package:

pip install langchain-google-cloud-sql-mysql

See usage example.

from langchain_google_cloud_sql_mysql import MySQLEngine, MySQLChatMessageHistory

Cloud SQL for SQL Server

Cloud SQL for SQL Server is a fully-managed database service that helps you set up, maintain, manage, and administer your SQL Server databases on Google Cloud.

Install the python package:

pip install langchain-google-cloud-sql-mssql

See usage example.

from langchain_google_cloud_sql_mssql import MSSQLEngine, MSSQLChatMessageHistory

Spanner

Google Cloud Spanner is a fully managed, mission-critical, relational database service on Google Cloud that offers transactional consistency at global scale, automatic, synchronous replication for high availability, and support for two SQL dialects: GoogleSQL (ANSI 2011 with extensions) and PostgreSQL.

Install the python package:

pip install langchain-google-spanner

See usage example.

from langchain_google_spanner import SpannerChatMessageHistory

Memorystore for Redis

Google Cloud Memorystore for Redis is a fully managed Redis service for Google Cloud. Applications running on Google Cloud can achieve extreme performance by leveraging the highly scalable, available, secure Redis service without the burden of managing complex Redis deployments.

Install the python package:

pip install langchain-google-memorystore-redis

See usage example.

from langchain_google_memorystore_redis import MemorystoreChatMessageHistory

Bigtable

Google Cloud Bigtable is Google's fully managed NoSQL Big Data database service in Google Cloud.

Install the python package:

pip install langchain-google-bigtable

See usage example.

from langchain_google_bigtable import BigtableChatMessageHistory

Firestore (Native Mode)

Google Cloud Firestore is a NoSQL document database built for automatic scaling, high performance, and ease of application development.

Install the python package:

pip install langchain-google-firestore

See usage example.

from langchain_google_firestore import FirestoreChatMessageHistory

Firestore (Datastore Mode)

Google Cloud Firestore in Datastore mode is a NoSQL document database built for automatic scaling, high performance, and ease of application development. Firestore is the newest version of Datastore and introduces several improvements over Datastore.

Install the python package:

pip install langchain-google-datastore

See usage example.

from langchain_google_datastore import DatastoreChatMessageHistory

El Carro: The Oracle Operator for Kubernetes

Google El Carro Oracle Operator for Kubernetes offers a way to run Oracle databases in Kubernetes as a portable, open source, community driven, no vendor lock-in container orchestration system.

pip install langchain-google-el-carro

See usage example.

from langchain_google_el_carro import ElCarroChatMessageHistory

Callbacks

Vertex AI callback handler

Callback Handler that tracks VertexAI info.

We need to install langchain-google-vertexai python package.

pip install langchain-google-vertexai
from langchain_google_vertexai.callbacks import VertexAICallbackHandler

Chat Loaders

GMail

Gmail is a free email service provided by Google. This loader works with emails through the Gmail API.

We need to install langchain-google-community with underlying dependencies.

pip install langchain-google-community[gmail]

See a usage example and authorization instructions.

from langchain_google_community import GMailLoader
API Reference:GMailLoader

Evaluators

We need to install langchain-google-vertexai python package.

pip install langchain-google-vertexai

VertexPairWiseStringEvaluator

Pair-wise evaluation of the perplexity of a predicted string.

from langchain_google_vertexai.evaluators.evaluation import VertexPairWiseStringEvaluator

VertexStringEvaluator

Evaluate the perplexity of a predicted string.

from langchain_google_vertexai.evaluators.evaluation import VertexPairWiseStringEvaluator

3rd Party Integrations

SearchApi

SearchApi provides a 3rd-party API to access Google search results, YouTube search & transcripts, and other Google-related engines.

See usage examples and authorization instructions.

from langchain_community.utilities import SearchApiAPIWrapper
API Reference:SearchApiAPIWrapper

SerpApi

SerpApi provides a 3rd-party API to access Google search results.

See a usage example and authorization instructions.

from langchain_community.utilities import SerpAPIWrapper
API Reference:SerpAPIWrapper

Serper.dev

See a usage example and authorization instructions.

from langchain_community.utilities import GoogleSerperAPIWrapper

YouTube

YouTube Search package searches YouTube videos avoiding using their heavily rate-limited API.

It uses the form on the YouTube homepage and scrapes the resulting page.

We need to install a python package.

pip install youtube_search

See a usage example.

from langchain.tools import YouTubeSearchTool
API Reference:YouTubeSearchTool

YouTube audio

YouTube is an online video sharing and social media platform created by Google.

Use YoutubeAudioLoader to fetch / download the audio files.

Then, use OpenAIWhisperParser to transcribe them to text.

We need to install several python packages.

pip install yt_dlp pydub librosa

See a usage example and authorization instructions.

from langchain_community.document_loaders.blob_loaders.youtube_audio import YoutubeAudioLoader
from langchain_community.document_loaders.parsers import OpenAIWhisperParser, OpenAIWhisperParserLocal

YouTube transcripts

YouTube is an online video sharing and social media platform created by Google.

We need to install youtube-transcript-api python package.

pip install youtube-transcript-api

See a usage example.

from langchain_community.document_loaders import YoutubeLoader
API Reference:YoutubeLoader

Was this page helpful?